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ABSTRACT. Time-shared computer (or processing) facilities are treated as stochastic queueing 
systems under priority service disciplines, and the performance measure of these systems is  
taken to be the average time spent in the system. Models are analyzed in which t ime-shared 
computer usage is obtained by giving each request a fixed quantum Q of time on the processor,  
after which the request is placed at the end of a queue of other requests; the queue of requests  
is constantly cycled, giving each user Q seconds on the machine per cycle. The case for which  
Q ~ 0 (a processor-shared model) is then analyzed using methods from queueing theory. A 
general time-shared facility is then considered in which priority groups are introduced. Speei~ 
fically, the pth priority group is given gpQ seconds in the processor each time around. Le t t ing  
Q --~ 0 gives results for the priority processor-shared system. These disciplines are compared 
with the first-come-first-served disciplines. The systems considered provide the two bas ic  
features desired in any time-shared system, namely, rapid service for short jobs and the v i r tua l  
appearance of a (fractional capacity) processor available on a full-time basis. No charge is  
made for swap time, thus providing results for " idea l"  systems. The results hold only f o r  
Poisson arrivals and geometric (or exponential) service-time distributions. 

1. In~oducgon 

Interest  in time-shared computing systems has been growing at an increasing r a t e  
in recent years. A number of such systems have been cropping up in various places 
throughout the country [1-5]. The motivation for such interest is toward encourag- 
ing the interaction between the user (programmer) and the computer itself. Fur ther -  
more, it is recognized that  the availability of computers must be increased so  
rapidly that  we may soon find it expedient to offer computational and processing 
capacity as a "public utility." A natural way to do this is to provide the public 
with access to computers on a time-shared basis (not unlike the telephone com- 
pany's use of graded trunk lines), thus providing a high efficiency for the user a s  
well as for the computer facility. 

Time-shared systems are often designed with the intent of appearing to a user a s  
his personal processor (where, ideally, he is unaware of the presence of any o ther  
users). Of course, no such ideal systems can guarantee a full-capacity full-time m a t  
chine to any user (in the time-shared mode), but  rather they offer a fractional- 
capacity "full-time" machine to each user. In the ideal case, at any time, the frac- 
tion of the total capacity offered to any user will be just 1 the inverse of the number  
of users currently requesting service (i.e., we assume an harmonic variation of indi- 
vidual capacity with number of users). 

Unfortunately, very little work has been carried out in analyzing the behavior of  

This research was sponsored by the Applied Mathematics Division, Office of Research, Uni ted 
States Air Force under Grant  No. AFOSR-700-65. This work represents a generalized versiorl 
of the author 's  paper, "Theory of Queues Applied to Time-Shared Computer  Systems, which 
appeared in tile 1966 I E E E  Region Six-Conference Record. 
1 This is generalized in the priority model described in Section 2. 
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time-shared systems from a mathematical viewpoint. In this paper we proceed in that  
direction. We begin with a queueing model of a time-shared system receiltly ana- 
lyzed by Kleinroek [6] in which the user present at the head of tile queue receives Q 
seconds of service on the processor and is then returned to the tail of the queue. 
Thus, a user cycles around the queue n times, where nQ is the number of seconds of 
processing time he requires. This is called the "round-robin" model (see Section 2). 

The round-robin model does not focus attention on any swap-time charges (i.e., 
the cost in time for removing the old job from and placing the new job on the 
processor). If desired, however, it can be added into the interval Q as an additional 
time cost. In this paper, we take the view that the best performance attainable in a 
time-shared system is achieved when swap time is assumed to be identically zero. 
By "best" we mean in terms of some average job-waiting times in the queue. In- 
deed, we wish to establish upper limits of performance for time-shared processors 
and do so by assuming zero swap time. 

If we consider a round-robin system in which we allow Q -~ 0, we arrive at an 
interesting model of a processor-shared system in which users are cycling around at 
an infinite rate, receiving an infinitesimal quantum of service infinitely often. When 
the total service time received equals a user's required processing time, he then 
leaves the system. Indeed, we see that this is identical to a model in which each 
user receives continuous processing at a rate C/h operations (say additions) per 
second when there are a total of h users in the system (where C is the capacity, in 
operations per second, of the processor). 

We also consider the more general ease of processor-sharing in which we have P 
priority groups. Members from the pth group (p = 1, 2, . •., P) receive gpQ seconds 
of service each time around the cycle. As Q --~ 0, we then obtain the priority proces- 
sor-shared system, which represents a fairly general ideal (in the sense of zero swap- 
time and zero wait on queue) time-shared system. 

In Section 2, we carefully define these three models. 

2. Queueing Models of Time-shared Facilities 

The Round-Robin Model. Our point of departure is the discrete time model of a 
time-shared processor studied by Kleinrock [6]. h~ this model, it is assumed that  
time is quantized with segments each Q seconds in length. At the end of each time 
interval, a new unit (or job) arrives in the system with probability XQ (result of a 
Bernoulli trial); thus, the average number of arrivals per second is X. The service 
time (i.e., the required processing time) of a newly arriving unit is chosen inde- 
pendently from a geometric distribution such that for 0 <_ o- < 1, 

s ~ = ( 1 - ~ ) ~ - '  n = 1 , 2 , 3 , - . . ,  (1) 

where s,~ is the probability that a unit's service time is exactly n time intervals long 
(i.e., that  its service time is nQ seconds). 

The procedure for servicing is as follows: A newly arriving unit joins the end of 
the queue and waits in line in a first-come-first-served fashion until it finally arrives 
~t the service facility. The server picks the next unit in the queue and performs one 
refit of service upon it (i.e., it services this job for exactly Q seconds). At the end of 
this time interval, the unit leaves the system if its service (processing) is finished; 
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if not, it joins the end of the queue with its service partially completed, as shown in 
Figure 1. Obviously, a unit whose processing requirement is nQ time units long will 
be forced to join the queue n times in all before its service is completed. 

An assumption must be made regarding the order in which events t~ke place at 
the end of a time interval. Consider two types of systems. The first system allows 
the unit in service to be ejected from the service facility (and then allows it to join 
the end of the queue if more service is required for this unit) ,  and instantaneously 
after that  a new unit arrives (with probability XQ). This is referred to as a late. 
arrival .system. The second system reverses the order in which these events are 
allowed to occur, giving rise to the early-arrival system. In both systems, a new 
unit is taken into service at the beginning of a time interval. 

Processor-shared Model (No Priorities). If we assume zero swap-time, we may 
consider the case of a round-robin system in which Q -~ O. We must be careful in 
taking this limit, since the service time nQ also goes to zero in this case and our 
model loses all meaning. Consequently, let us agree to keep the average service time 
c, onstant as Q - )  O. This involves changing ~r, the decay rate in eq. (1) such that 
z --, 1 as Q --~ O. Specifically, we have that  

= n s n  - 

n = l  1 - -  0" 

and, defining 

1 
tLC - average service requirement (in seconds), 

we obtain 

1 Q 
- - constant as Q --~ 0 and ¢ --~ 1 

#C 1 - c~ 

o r  

= 1 - t~CQ. (2) 

Thus, the limiting operation we consider is where Q --~ 0 and ~ --, 1 in the manner 
expressed in eq. (2). The result of this limit is that  the required service l (in opera- 
tions) is exponentially distributed with paremeter t~, namely, 

p(l )  = ~e -'~, (3) 

where I is the length of the job. 
We have chosen to assume that  the length l of a job is given in number of opera- 

C 

FIG. 1. 

tOO" 

XQ Q U E U E  ~ p(I-O") 

SERVICE 
FACILITY 

Round-robin time-shared service system 
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tions instead of in seconds, thus making the user requirement independent, of the 
machine on which it is serviced. We then define, for any processor, a quanti ty 

C = capacity of a processor in operations (say, additions) per second. 

The service t ime for a job then becomes l/C seconds, with a mean service time of 
1/~C seconds. 

The arrival mechanism in the limit then becomes Poisson with an average arrival 
rate of X customers per second. This model reduces to a system in which a user is 
processed at a rate C/tc operations per second when there are k users sharing It 
computer of capacity C. This processing rate varies as new users enter and old ones 
leave the system. We are here assuming an harmonic variation of individual proc- 
essing rate with number  of eustomers. (See Figure 2.) 

Priority Processor-shared Model. This is a generalization of the processor- 
shared system considered above. Here we assume tha t  the input tragic is broken up 
into P separate priority groups, where the pth  group has a Bernoulli arrival pat tern 
at an average rate of X~ customers per second and a geometrically distributed service 
requirement whose mean is 1/(1 - ~r~,) operations. For the Q --~ 0 case, we give a 
member of the pth  priority group g~,Q seconds of service each time he cycles around 
the queue (see Figure 3). 

For Q -~ 0, holding fixed 1/~pC = Q/(1 - Cv), this model then reduces to a proc- 
essor-shared model with a priority structure wherein a member  from group p re- 
ceived at  t ime t a fraction f~,  where 

f ~  - -  p gP (4) 
g~ n~ 

of the total  processing capacity C (here n~ is the number  of customers from priority 
group i present in the system at t ime t). We note tha t  we then have, for the pth 
group, Poisson arrivals (Xp per second) and exponential service with an average of 
1/~C seconds. The nonpriority processor-shared model considered earlier is the 
special case gp = 1 for all p. 

The interest in this model is tha t  it can be used to give preferential service to 
certain groups of users. For convenience, we may consider that  the higher the value 

POISSON 
ARRIVALS X PER 
SECOND 

AVERAGE 
PROCESSING 
REQUIREMENT 

C/N 1 

C/N J 

0 

C/N 
= I/H- OPERATIONS| C/N 
(EXPONENTIAL) 

F I G .  2.  

C = TOTAL PROCESSOR 
CAPACITY 

(IN OPERATIONS 
PER SECOND) 

L C/N 4--- N CUSTOMERS 
PRESENT 

Processor-shared model with N in system 

Journal of the Association for Computing Machinery, Vot. 14, No. 2, April 1967 



246 LEONARD KLEINROCK 

FIG.  3.  
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Priority processor-shared model with n~ type p in system 

of p, the higher is considered the priority of the group. In such a case, we may 
assume that gp is ~ monotonically i~tcreasing function of p (although we do not need 
this for the subsequent development). 

A diagram of the priority processor-shared system is shown in Figure 4. 
We observe that  the two processor-shared models are ideal in the sense that swap- 

time is assumed to be zero and in that  customers are give~t immedi~te use of the 
processor (although only a fractional capacity f~C). 

3. Results for Time-shared Systems 

Round-Robin System. The Round-Robin system has already been studied [6]. 
We present the results of that  analysis here. 

THEOREM 1. The expected value ~1 of the total time 2 spent in the late-arrival system 

2 T. is the sum of the time spent in the queue and the time spent in the service facility. 
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jb' a job whose service time is nQ seconds is 

_ nQ ~'Q~ 1-1 %, + 
1 - p  1 -- p L 

where 

(i(~ ~a)(l n C 1)] 
- ~)~(I - p) J '  

(5) 

c~ = z + X Q ,  (6) 

xQ (7) P l--or 

Furthermore, the expected number E,, of customers in the system is given by 

E~. - ~ (S) 
l - - p "  

THEOREM 9. The expected value Tn' of the total time spent in the early-arrival sys- 
tem for a unit whose service time is nQ seconds is 

- F (i - - 7 ' '  nQ pQ xQ:P 1 + (9) 
1 - p  i - p L  ]' 

where a and p are as defined before. The expected number Er r of customers in the system 
is given by 

E /  - p(1 - xQ) (10) 
1 - p  

Tt{EOnEM 3. The expected value, T~/', of the total time spent in the strict first- 
come-first-served system3 Jbr a unit whose service time is nQ seconds is 

T~" - QE~ + nQ, (11) 
1 - o -  

where E~ is defined in eq. (8). 
We remark here tha t  there is no significant difference in performance between the 

late- and early-arrival systems. In  [6] it is shown that  a good approximation to )"~ is 

T, = nQE~ + nQ. (12) 

When we compare eqs. (11) and (12), we see that for units which require a number 
of service intervals less (greater) than 1/(1 - cr), the round-robin waiting time for 
the late-arrival system is less (greater) than the strict first-come-first-served system. 
One notes, however, that  the average number of service intervals g is exactly 
1/(1 - c0. Thus, for this approximate solution, the crossover point for waiting 
time is at the mean number of service intervals. This effect is observable in Figures 
5-7 in Section 4. 

Processor-shared System. The Processor-Shared model considers the limit of the 
round-robin model in which Q --~ 0 and a = 1 - t~CQ, giving a Poisson arrival 
mechanism with an average of X units arriving per second and an exponential 

3 This is our reference system and corresponds to the more usual case where a unit receives its 
complete processing requirement the first time it enters service. 
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se rv ice  d i s t r i b u t i o n  w i t h  an  a v e r a g e  of 1 /#  o p e r a t i o n s  per  cus tomer ,  i n  th is  case, 
t he  e a r l y -  and  la te - .a r r iva l  s y s t e m s  b e c o m e  iden t i ca l ,  a n d  we have  t h e  fol lowing.  

THEOm,:M 4. The expected value T( l) of the total time spent in the processor-shared 
system for a customer requiring 1 operations is 

l /C (13) 
r ( 1 )  - i - p 

~dta"e 

p = X/.C, 
(14) 

C = capacity of the proces,vor in operations per second. 

The expected number E of customc'rs in the system is 

P (I,~) 
]5' - -  1 _ p • 

I)I¢OOF. W e  def ine 1, the  r equ i r ed  n u m b e r  of o p e r a t i o n s  for a c u s t o m e r  as 

l = l ira nCQ. (16) 
Q~0 
a--~l 

Thi s  l imi t  is m e a n i n g f u l  in t h a t  the  d i s t r i b u t i o n  on n (cq.  ( 1 ) )  shows  t h a t  as o- --~ 1, 
e x t r e m e l y  la rge  va lue s  of n occur .  I n d e e d ,  we m a y  ca lcu la t e  the  p r o b a b i l i t y  d i s t r ibu-  

Pr[L < 1] = l im Pr[nCQ < l] 
Q-~O 
n~c~ 

t i on  for  l, 

which p roves  t h a t  / is e x p o n e n t i a l l y  
in eq. (3 ) .  

I/OC 

l i ra  ~ (1 - o-)¢ i - '  
Q*0 i=I  

l i ra  1 - (1 --  uCQ) ~/qc' 
Q~0 

--/ul 
1 - - e  , 

d i s t r i b u t e d  w i t h  m e a n  1/~ o p e r a t i o n s  as s t a t e d  

W e  n o w  cons ide r  t h e  l im i t i ng  

a n d  

( 1  - -  a a )  = 

fo rm for eqs. (5)  a n d  (9 ) .  W e  h a v e  t h a t  

[1 - -  (1 - tLCQ)(1 - ~CQ + xQ)] 

Q [ 2 ~ C  - .  x - Q ( ~ C ) ~ ( 1  - p)] 

n--I 
l i ra  1 - -  a = lira 1 - (1 - uCQ + XQ) (zIQc)-I 
Q~O Q-+O 

l i ra 1 - [1 - -  i~CQ(1 -- p)]u/Qc)-i  
Q~O 

= 1 - e - g ~ ( 1 - ~ )  

arld 

(1 --  a)2 = (1 - -  1 q- t~CQ) 2 = (~CQ) ~. 
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Thus, defitfing 

we obtain from eq. (5), 

T(I) = l ira{ ~!~ XQ2 

= . l /C  lira 1 + 
1 - -  p Q~o 

1 - -  p Q~o 1 p t  

1/c 
= -l - p '  

T ( I )  = l i r a  T,~ ,  

or--1 

+ 

I1 - e -~(~- ; ) ] [2 ,C  - x - Q ( , C ) ~ ( i  - ; ) ] \  
i : p) / 

Thus, we have established eq. (13) for tile late-ar:riwfl system; but it is cleat" that  
r , ,  

limQ~0 .T,~ = limQ~0 7,, and so eq. (13) is true for the early-arrivM system also. 
• , t i ~  . ti'rom eqs. (8) and (10) it is clear that  .E = llmQ_,0 L,. = limo-,o L,. This completes 

the proof of Theorem 4. 
In Section 4 these results m'e compared with those of the round-robin model. 

Priority Processor-shared System. In the Priority Processor-shared systenl, we 
have, P priority groups with t'oisson arrivals at an average rate of X, per second and 
an exponentially distributed service requirement with ~t mean of l/m, operations 
(p = 1, 2, • .. , P) .  For a processor of capacity C operations per second, we assign 
a customer from the pth priority group a capacity J'pC when there are n~ type-/  
customers in the system; f~ is given by eq. (4), namely, 

2 ; _  p.(l,  
(4 )  

gi  n~ 
i=1  

For such a system, we have the following theorem. 
Tmi~OREM 5. The expected value Tp(1) of the total time spent in the priority proces- 

sor-shared system jbr a customer fl'om priority group p who requires 1 operations is 

T p ( l )  = ~ 1 4 -  - -  ( 1 7 )  
~=~ g~(1  p)  ' 

The expected number, E ,  , of type p customers in the system is 

Ep - 1 - -  P i=1 

~p 
Pr ~p C 

P 

P = E P p  p~l 

where 

and 

and where g~ > O, p = 1,2,  . . .  , P. 
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-~p 

TAn) 

Dj,. 

Clearly then, 6 

PI~OOF. We carry out this proof by assuming Q > 0 and theft customers from the 
pth priority group are given g,,Q seconds of service each time they eyrie around the 
round-robin queue. We assume that the pth priority group has a geometrically dis- 
tributed number of service intervals n with decay parameter 0 < ~,, < 1 (see eq. 
( 1 ) ) and that a single arrival of type p occurs during the interwfl Q with probability 
X~,Q (and that no su('h arrival occurs with probability 1 - X~,Q). Then when we let 
Q --~ 0, we arrive at the priority processor-shared model. ~ The proof follows the 
approt~eh used in [6] to solve the round-robin system. 

Accordingly, let us consider the arrival of a unit (the tagged unit) from priority 
group p and which requires nQ seconds of service (processing). Let 

= expected number of type p customers in the system, 

= expected time spent in the system (queue plus service) for the tagged 
unit, 

= expected delay (time spent) between the completion of the tagged unit's 
(,~ - 1)st ejection h'om service and its kth ejection from service/ 

We now define 

k=l  

Na.~ = expected number of type-/customers served between the completion of the 
tagged unit's (k - 1)st ejection from service and its kth ejection from 
service. 

Titus, 

and so 

P 
Dk = ~ N~.~g~Q (20) 

i=l 

_£ 
7'p(n) = ~ ~ N~igiQ. (21) 

k=l  i~1 

We now derive a general form for Nki. Upon its arrival to the system, the tagged 
unit finds ~ certain number of type-/ units in the queue, the expected value of 
which is Ei by definition. Note that the service facility is empty whenever a new 
unit enters the system. Thus, 

N u  = E i  -~- ~ip, (22 )  

where 

IO, i ~ p, 
5.1~ = 1, i = p .  

4 We also assume a late-arrival system; however, this choice is unimportant,  since early and 
late arrival systems are identical for Q ~ O. 
5 We complete this definition by assuming that its Oth ejection from service is completed at its 
time of arrival to the system.  
6 We do not worry about n/gp  being an integer, since we shortly allow Q ~ O, which effectively 
converts this stun to an integral. 
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The addition of ~ ,  is due to the tagged unit 's first service interval. Now, each 
Ei-unit of ~ype i will remain in the system with probability ~ ,  trod so ~,:(Nli - ~,:~,) 
of them will contribute to Neg. In adclition, during the time Q ~ j ~ l  gj(Nlj  - ~jp), 
devo*ed to servicing these units found in the original queue, we expect. X,- new units 

P of type i to arrive per second, and so we must also add XiQ ~ i=1  gj(Nl j  - ~p) 
more units to N2,:. Besides all this, for n > 1, we must add one Inore (the tagged 
unit itself) to N2~,, giving 

P 

N2~ = ~ ( N t i  -- 3,p) + x~Q ~ gj(N~j -- ajv) + 6,,,. (23) 
j ~ l  

In calculating Na~, we see that; a fraction c~, of the type~i units which were served 
during the D2 time interval will remain in the system; i.e., o-,(Nex -- 5,~,) type- /wi l l  
remain. In addition, during the time 

P 

D2 = Q ~ gj(N2¢ - 5jp), 
,/=1 

we expect X~D2 new units to arrive on the average. Also, for n > 2, we must add one 
more (the tagged unit again) to N ~ .  

However, we now notice a new effect entering, namely, the presence of a type-/  
unit whie, h arrived (with probabili ty Xfg~Q) at the conclusion of the first service 
interval of the tagged unit. This additional unit was placed in back of the tagged 
unit when it arrived and therefore did not appear in N2i. From now on, however, it 
will appear as an additional X~g~Q added to each Nki for k > 3. Thus, 

P 

N~4 = ¢~(N~ - &~) + X~Q ~ g~(N~i - 3~,) + ~,:~ + Xig~,Q. (24) 
j= l  

For N~ (]c > 3) we repeat the arguments used for finding Na,~, with the substitutions 
N~i for N~ and N,_~,~ for N ~ .  Thus, for/c > 3 we obtain 

P 

N~.i = c~i(N~_~,~ - ~ )  + X~Q ~ g~(Nk-L~ -- ~'~) + ~.~ + X~g~Q. (25) 
:i=1 

We now make use of the limit Q ~ 0 under the condition o~, = 1 - ,~CQ (so 
that z~ ~ .  1 for all p and the aw~rage number of operations required for type-p 
units remains fixed at 1 / ~ ) .  Applying this limiting operation to eq. (25) yields, for 
/ c_>3 ,  

2~r~ -~ lim N~.~ = N~_~,¢, k > 3. (26)  
Q-~0 

We have 

hqi = N l i  = El + 80 (27) 

and, from eqs. (23) and (27), we obtain 

~r2i = Ni l  = Ei Jr- ~ip. ( 2 8 )  

Applying eq. (28) to eq. (26) for k = 3 and repeating the process for all k, we 
obtain the simple result 

2~kl = E i  + ~ip, k = l, 2, 3, " '"  • (29) 
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We now consider the limit of Tp(n) as Q --~ 0 and define 

T,( l)  = lim Tp(n) 
Q*0 

From eqs. (21), (29), and (30), we then obtain 

Q+O k = l  i ~ l  i = l  Q+O k ~ l  

But from eq. (16) we have that  limQ~0 nQ = 1/C, and so 

1 
i 

gl (Ei + ~ )  T,(1) = ~ - 
i=1 gp 

o r  

(3o) 

P 

i = l  gp  Q~o 

Tp(l) = ~ 1-P Ei . (31) 
i= l  

We must now evaluate E l ,  the expected number of type-/ customers in the 
system. We make use of Little's [7] result, which states that, in general, the ex- 
pected number of units in a queueing system which has reached equilibrium is 
equal to the product of the average input rate of these units to the system and the 
expected time spent by these units in the system. His result holds for priority sys- 
tems as well, and so we have the set of P linear simultaneous equations in the E~, 
namely, 

Ep = XpTp , p = 1 , 2 , . . .  , P, 

where T ,  is the average time that  type-p units spend in the system. By definition, 
/i ~o 

T~ = ]o p(1)T~(1) dl. 

From eqs. (3) and (31) we obtain 

~ , C  1 + - -E~ (32) i=l g~ 
and so we must solve 

o r  

E v -  xP ( P ~ 
tL, C 1 -P ~ g ~ J ~  p = 1 , 2 , . . .  P 

i=l  gp / 

i = l  gp  / 

We assert that the solution to the set of eqs. (33) is given by eq. (18), namely, 

E ~ -  1 - p  i=1 ~ -  1 p~ . (18) 

We check this assertion by substituting eq. (18) in eq. (33) and testing the (con- 
jectured) identity 

PP l--P- g~ - 1 p~ = pp 1 -t- g..i( P~ l - l -  g s _  1 ps 
1 - -  p i=i ~=i g~ .i=i 
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o r  

- - - -  1 pi = 1 -- p q- - - -  l 'q-  - - I  pj 
~=* gv j=1 \g~ 

o r  

P P P P P 

Eg,  p,_ Eg, o_ , + E y ,  p~Eg~ Eg, p,p 
~i gp i=1 gp i=1 gp i=1 gi 4~t gp 

o r  

P P O 

0 = E o ~ E g ~ p ~ -  oEg~o~ 

0 = 0, 

thus establishing the required identity and validating the asserted solution for ~vp. 
We must now evaluate (for subsequent use), 

-- i : : ) +  ~=1 i=1 1 ~ p j=l \g l  
P P P P P 

= E  g,o, o~ E g ~ o , - E g ,  o , E  o~ 
/ - - o  + E i  - ~ ,  , = ,  o" 

Thus 
P .P 

E g, E, = E g' o~ (34) 

We now substitute eq. (34) in eq. (31) to obtain finally 

T~(l)=~ l+~=xg~(l_p) ' 

thus establishing eq. (17) and concluding the proof of Theorem 5. 
In Section 4, this priority processor-shared model is compared with the other two 

models studied. 
For completeness, we also consider a strict first-come-first-served system with 

the same input and service requirements as in our priority model. To this end, we 
have 

THEOREM 6. The first-come-first-served system with a priority input yields, for 
customers with 1 required operations, a total expected time in system as follows: 

l o /uC (35) T(1) = ~ + f : ; , 

where 

PROOF. 

1 p 
P ~c- E x~ (36) 

p = l  

The result follows directly from classical queueing theory results. We 
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proceed as follows. Upon entering, ore" tagged unit finds F~ customers from pr ior i ty  
group p present in the system, each of which will take, on the average ] . /~C seconds 
of service. His own time in service will be exactly UC seconds; thus, 

t £ Fp 
T(0 = ~ + . (~7) 

But from Little [7] we have 

XflT'~ = F~. (38 )  

But for tile first-come-first-served ease, Tp = 7' for all p. Thus, from eq. (37) 

7' = p(1)T(1) dl = ~ + , ( 39 )  

where 

and 

giving 

p=l E ~p 

P 
X = ~ X i ,  

i=l 

~C ~=1 ~ I~p le - ' ~  dl 

P 
= ~  Xp _ p  

p=l XC#p X ' 

where p is defined as in Theorem 5. This establishes eq. (36). Thus, eq. (38) b e -  
c o m e s  

~ = ~ 0  = F , ,  p = 1 , 2 ,  . . .  , P .  ( 4 0 )  

FIG. 5. 

12F k I-or / bkWn FOR 
I = ~ -  n=5o/ ~" FIRST COME 

8 [  / 20/ FIRST SERVED 

0 - I 
0.2 0.4 0.6 0.8 1.0 

P 

[(1 -- ~)/(~Q)]W, for the late-arrival round-robin system (o- = 19/20) 

FIG. 6. 

°Y t 
0.2 0.4 0.6 0.8 1.0 

P 
[ ( 1  - ¢)/(aQ)]W. for  the la te-arr ival  round- rob in  s y s t e m  (a -~ 4/5) 

JournM of the A~ociation for Computing Machinery, Vol. 14, No. 2, April 1967 



9, ~ Time-shared Systems: A Tt~eo~'etica~ T~'eatment ,.05 

The solut ion to  th is  set of equat ions  is readi ly  seen to be 

F , = y y - -  , 

which when subs t i t u t ed  into eq. (37) gives 

1 ~ X~ p 
T( l )  = ~ --~ ,-.- kt~p C 1  -- p 

I p2 

= C + h(1  - -  p) 

l p/#C 
= 

which comple tes  the  proof  of Theo rem 6. 
We note  t h a t  for P = 1 we have  the  (nonpr io r i ty )  p r o c e s s o r - s h a r e d  sys tem.  

Fro. 7. 

32 

t k - I -o  
"crQ- 

28 

24 = 20 

kwh FOR 
20 5 ,FIRST COME 

FIRST SERVED 

12 2 I 

B 

4 

0 1 [ 
0 0.2 0.4 0.6 0.8 1.0 

P 
[(1 -- ~)/(~Q)]W, for the late-arrival round-robin system (o- = 1/5) 

FIG. 8. 
= 4/5) 

l O -  

B -  

6 

4 

2 

0 5 I0 15 20 25 50 55 40 45 50 
n ~  

[(1 - ~)/~Q]W, for the late-arrival round-robin system as a function of n (p = 1/2, 
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Processor-shared system : performance as a function of p for various ~l 
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Processor-shared system: performance as a function of #l for various p 
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IRST 
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RVED 
STEM 

A 

~- 5 # 
0 

4 

: 4  
--5 

O0 0.2 0 .4  0.6 0 .8  1.0 
p ~  

FiG. 11. Priority processor-shared system: performance as a flmction of p for gp = p' 
(p = 1, 2, 3, 4, 5), #p = #, kp = X/P, and #l = 1 

4. Discussion, Examples, and Comparison of the Systems 

Having considered three  models  of t ime-shared  systems,  we now wish to compare  
their per formance  among  themselves  as well as wi th  the f irst-come-first-served 
systems. The  basis of comparison will be the average condit ional  additional delay  
experienced by  u cus tomer  (condi t ioned  on his required processing as well as on his 
priori ty) .  We  define the  add i t iona l  de lay  as the  difference between the t ime tha t  a 
customer spends in the  t ime-shared  sys tem and the t ime he would spend in the  
system if no o ther  customers  were present  (in a first-come-first-served model, this 
is merely his t ime  in queue) ;  i.e., let  

Wv(l) = average  addi t iona l  de lay  experienced by  a customer  from pr io r i ty  group 
p who requires 1 opera t ions  in service (obvious  analogous definit ion for 
Wp(n) and W(n) in the  Q > 0 case).  

We have 7 

1 
W~(l) = T~(l) - ~ .  (41) 

In the mos t  general  model,  we wish to d isp lay  curves of W~(l) as a funct ion of 1 

7 Obviously, for Q > 0 we have W~(n) = .Tp(n) - nQ. 
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8 

6 

#5 0 =L 

5 

2 

/S/FIRST COME FIRST 
#1 SERVED 
II SYSTEM 

)=5 
)=4 
)=5 

0 I . , 

0 0 , 2  0 .4  0 .6  0 8  1.0 
p ~  

Fro .  12. P r i o r i t y  p r o c e s s o r - s h a r e d  s y s t e m :  

p e r f o r m a n c e  as a f u n c t i o n  of p for  gp = p 

(p = 1, 2, 3, 4, 5), #p = ~, X~ = X/P, and 

#l = 1 

10 

8 - -  

7 - -  

6 - -  

0 

4 - -  

FIRST COME ED~~]j I FIRST SERV 

2 

I I 
0 0.2 0.4 0~6 0.8 I.O 

FIo. 13. Priority processor-shared systennL : 
performance as ~ function of p for 

gp = log~ (1 -F P) (p = 1, 2, 3, 4,5), 
up = ~, xp = x / P ,  ~ l =  1 

and as a funct ion of p wi th  p as a pa ramete r .  Fu r the rmore ,  we choose to p lo t  

1 - W p ( n )  
o'~ Q 

ra the r  t h a n  W p ( n )  for purposes  of a convenient  normal iza t ion ,  which, in t h e  
case for Q --~ 0 becomes #pCW~(1) .  Below we presen t  these  curves  for v a r i o u s  
examples .  

R o u n d - R o b i n  Sys tem.  In  Figures  5-7,  curves 8 of [(1 - ~ ) / ~ Q ] W , ,  ~ k W ~  a r e  
p lo t t ed  to show the  general  behav ior  Of the  round- rob in  s t ruc tu r e  for the  l a t e -  
a r r iva l  sys tem.  On each graph,  (c i rc led)  poin ts  cor responding  to  the  f i r s t - come-  
f i rs t -served case have  also been included.  T h e  normal iza t ion  (1 - a ) / ¢ Q  used i s  
such t h a t  for the  f i rs t -come-f i rs t -served case we ob ta in  the  curve p / ( 1  - p),  w h i c h  
is a funct ion only  of p. 

F igures  5-7 indicate  the  accuracy  of the  app rox ima t ion  discussed above,  in w h i c h  
the  crossover po in t  for wai t ing  t imes  is a t  the  mean  n u m b e r  of service i n t e rva l s ,  
l / (  1 - a ) .  In  F igures  5 and 6 there  is no not iceable  difference (on the  scale u sed )  

8 These are the same curves as in Kleinrock [6]. In these curves, p was varied by fixing o- and 
varying XQ (recall p - xQ/(1 - or)). 
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o 0.5 ~.o ,5 2.0 2.5 s.o 3.5 4.0 4.5 5o 

Fro.  14. P r i o r i t y  p r o c e s s o r - s h a r e d  s y s t e m :  p e r f o r m a n c e  as a f u n c t i o n  of #l  for gp = p~  
(p = 1, 2, 3, 4 , 5 ) , # p  = t~, X p =  Xp = X/P, and  p = 1/2 

between the  f irst-come-first-served points and the  curve for n = 1/(1  - or); more-  
over, in Figure 7 the  points  fall between the curves for n = 1 and n = 2, since 
1 / ( 1  - (r) = 1.25. 

I n  Figure  8, we plot  kW~ as a function of n for p = ½, ~ = ~-. In  all these curves 
(Figures  5 -8)  we observe t ha t  by  introducing the  round-robin system,  one manipu-  
lates the relat ive wai t ing t ime for different jobs and thus imposes a me thod  of 
t ime-shar ing which gives preferential  t r e a t m e n t  to short jobs. 

Procesaor-shared System. In  Figures 9 and 10, we plot ~CW(l) as a funct ion of 
p (for var ious  #l) and as a funct ion 9 of #l (for various p), respectively.  

In  Figure  10, the  circles indicate  the values of #CW(1) for the  str ict  first-come- 
first-served sys tem (see T h e o r e m  6). Again we see the preferential  t r e a t m e n t  given 
to shorter  jobs, and  again we see tha t  the break-even point for jobs is the average 
job length (#l = 1). 

Priority Processor-shared Model. For  these curves, we let t~ = t~, k~ = X/P, 
P = 5 for p = 1, 2, . . .  , 5. In  Figures 11-13 we show #CW~(l) as a funct ion of p 
for var ious  p and for ~l = 1. Figure  11 is for g~ = p~, Figure 12 is for gp = p, and 
Figure 13 is for g~ = log2 (p  + 1). In  each of these figures, the  circles correspond 
to the  str ict  f irst-come-first-served sys tem (which compares the t r e a t m e n t  as 
funct ion of p for the  two sys tems) .  

I n  Figures 14-16 we show ~CWp(I)  as a function of #l for various p and for p = 
1/2.  Again g~ = p2, gp = P, and  g~ = logs (p -t- 1) for Figures 14, 15, and 16, re- 
spect ively.  In  each of these figures, the circles correspond to  the behavior  of a 
f i rs t-come-firs t-served system. (On  these axes, it is a constant  addi t ional  delay, 
independent  of ~l.) 

In  bo th  processor-shared models,  Wp(l) approaches  zero as p --~ 0 for all l and p. 
In  all the  curves presented,  we see t ha t  the effect of introducing a t ime-sharing 

discipline is to reduce the  average  wait ing t ime for customers wi th  " sho r t "  service 

9 td = 1~(1lie) is the length of a job normalized with respect to its average length. 
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(processing) requirements at the expense of those customers with " l o n g e r "  service 
requirements. For the nonpriority cases (i.e., the first two models studied), we ob- 
serve tha t  customers with service (processing) requirements less (greater) than the 
average requirement spend, on the average, less (greater) t ime in the system, com- 
pared with a strict first-come-first-served system. 

In the priority processor-shared system, we see a similar trend (i.e., short jobs 
wait less than long jobs), and, in addition, we give preferential t rea tment  (shorter 
waiting) to certain select high-priority groups. The effect now is that  for job lengths 
below some critical value (dependent upon p, the priority group) a customer does 

14 - 

FIG. 15. 
(p = 1, 2,3,4, 5), 

12 --- p:l 

Io 

i= 
FIRST 

SERVED/  / / ~ . ~ - ~  

~ -  I J [ J o • 2] I 3t 4 5 

t~t-- 

Priority processor-shared system: performance as a function of ~l for gp = p 
#~, = ~, k p = ; x / P ,  ~nd p = 1/2 

FIG. 16. 
gp = log (1 -F p) (p = 1, 2, 3, 4,5), 

14 

10J-- 

p:2 
FIRST 

SERVED ~p=4 

i j : _ _ _ L _  i r x 
0 I 2 3 4 5 

Prior i ty  processor-shared system: performance as a function of ~l for 

~p = ~, X~ = X / P ,  and p = 1 /2  

Journal o1 the Association for Computing Machinery, Vol. 14, No. 2, April 1967 



Time-shared Systems: A Theoretical Treatment 261 

better (waits less) in the time-shared system than in a first-come-first-served 
system. This critical length is monotonically increasing with p. The degree and 
manner in which the different priority groups receive treatment depends upon the 
function gp and may be varied over a considerable range of relative performance. 

Conclusion 

In this paper, we have considered several models of time-shared processing sys- 
tems. These models provide the basic features desired in such systems, namely, 
rapid service for short jobs and the virtual appearance of a (fractional capacity) 
processor available on a full-time basis. 

The most general model, the priority processor-shared system, not only provides 
the above features but  also allows the population of customers to be divided into 
priority classes where the higher priority groups receive preferential t reatment  
compared with the lower priority groups. 

The assumption of zero swap-time results in models which provide the best pos- 
sible performance of such time-shared systems. Comparison of these systems with 
the strict first-come-first-served systems showed the relative improvement (or 
deterioration) of performance as a function of service requirement and priority 
group. 
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