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apsTRACT. Time-shared computer {or processing) facilitics are treated as stochastic queusing
gystems under priority serviee diseiplines, and the performance measure of these systems ig
taken to be the average lime spent in the system. Models are analyzed in which time-shared
computer usage is obtained by giving each request a fixed quantum @ of time on the processor,
after which the request is placed at the end of a quene of other requests; the queug of requestg
i constantly eycled, giving each user § seconds on the machine per eyele. The case for which
¢ — 0 (o processor-shared model) is then analyzed using methods from queucing theory. A
general time-shared facility is then considered in which priority groups sre introduced. Bpeci-
fically, the pth priority group is given ¢g,¢ seconds in the processor each time around. Letting
Q) — 0 gives results for the priority processor-shared system. These disciplines arc compared
with the first-come-firsi-served disciplines. The gystems considered provide the two hasic
features desired in any time-shared system, namely, rapid service for short jobs and the virtual
appearance of a (fractionsal capacity) processor available on a full-time basis. No charge is
made for swap time, thus providing results for “ideal” systems. The results hold only for
FPoigson arrivals and geometric (or exponential) service-time distributions.

1. Introduction

Interest in time-shared computing systems has been growing at an increasing rate
in recent years. A number of such systems have been cropping up in various places
throughout the country [1-5]. The motivation for such interest is toward encourag-
ing the interaction between the user (programmer} and the computer itzelf, I'urther-
more, it is recognized that the availability of computers must be inereased so
rapidly that we may soon find it expedient to offer computational and processing
capacity as a “public utility.” A natural way to do this is to provide the public
with aeccess to computers on a time-shared basis (not unlike the telephone com-
pany’s use of graded trunk lines), thus providing a high ethiciency for the user as
well as for the computer facility.

Time-shared systems are often designed with the intent of appearing to a user as
his personal processor (where, idecally, he is unaware of the presence of any other
users). Of course, no such ideal systems can guarantee a full-capacity [ull-lime ma-
chine to any user (in the time-shared mode), but rather they offer a fractional-
capacity “full-time” machine to cach user. In the ideal ease, at any time, the frac-
tion of the total capacity offered to any user will be just' the inverse of the number
of users currently requesting service (i.c., we assume an harmonie variation of indi-
vidual capacity with number of users).

Unfortunately, very little work has been carried out in d,na.lymng the behavior of
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States Air Foree under Grant No. AFOSR-706-65. This work represents a generalized version
of the author’s paper, “Theory of Queues Applied Lo Time-Shared Computer Systems, which
appeared in the 1966 IEEE Region Six-Conference Record.

! This s generalized in the priority mode! described in Section 2.

Journel of the Association for Computing Machinery, Vol. 14, No. 2, April 1967, pp. 242-261.



Pime-shared Systems: A Theoretical Trealment 243

time-shared systems from a mathematical viewpoint. In this paper we proceed in that
direction. We begin with a queueing model of a time-shared system recently ana-
lyzed by Kleinrock [6] in which the user present at the head of the queue receives @
seconds of service on the processor and is then returned to the tail of the queue.
Thus, & user cycles around the queue » times, where ng) is the number of seconds of
processing time he requires. This is called the “round-robin” model (see Section 2).

The round-robin model does not focus attention on any swap-time charges (i.e.,
the cost in time for removing the old job from and placing the new job on the
processor). If desired, however, it can be added into the interval @ as an additional
time cost. In this paper, we take the view that the best performance attainable in a
time-shared system is achieved when swap time is assumed to be identically zero.
By “best” we mean in terms of some average job-waiting times in the queue. In-
deed, we wish to establish upper limits of performance for time-shared processors
and do so by assuming zero swap time.

If we consider a round-robin system in which we allow @ ~— 0, we arrive at an
interesting model of a processor-shared system in which users are cycling around at
an infinite rate, receiving an infinitesimal quantum of service infinitely often. When
the total service time received equals a user’s required processing time, he then
leaves the system. Indeed, we see that this is identical to a model in which each
user receives continuous processing at a rate C/k operations (say additions) per
second when there are a total of k users in the system (where (' is the capacity, in
operations per second, of the processor).

We also consider the more general case of processor-sharing in which we have P
priority groups. Members from the pth group (p = 1, 2, -- -, P) receive g,Q seconds
of service each time around the cycle. As § — 0, we then obtain the priority proces-
sor-shared system, which represents a fairly general ideal (in the sense of zero swap-
time and zero wait on queue) time-shared system.

In Section 2, we carefully define these three models.

2. Queueing Models of Time-shared Facilities

The Round-Robin Model. Our point of departure is the discrete time model of a
time-shared processor studied by Kleinrock [6]. In this model, it is assumed that
time is quantized with segments each @ seconds in length. At the end of each time
interval, a new unit (or job) arrives in the system with probability M@ (result of a
Bernoulli trial); thus, the average number of arrivals per second is \. The service
time (i.e., the required processing time) of a newly arriving unit is chosen inde-
pendently from a geometric distribution such that for 0 < ¢ < 1,

sn=(1———0—)a—n—1 n=1y2)3y"') (1)

where s, is the probability that a unit’s service time is exactly » time intervals long
(ie., that its service time is nQ seconds).

The procedure for servicing is as follows: A newly arriving unit joins the end of
the queue and waits in line in a first-come-first-served fashion until it finally arrives
at the service facility. The server picks the next unit in the queue and performs one
unit of service upon it (i.e., it services this job for exactly @ seconds). At the end of
this time interval, the unit leaves the system if its service (processing) is finished;
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244 LEONARD KLEINROCK

if not, it joins the end of the queue with its service partially completed, as shown in
Figure 1. Obviously, a unit whose processing requirement is 7€) time units long will
be forced to join the queuc n times in all before its service is completed.

An assumption must be made regarding the order in which events take place at
the end of a time interval. Consider two types of systems. The first system allows
the unit in service to be ejected from the service facility (and then allows it to join
the end of the queue if more service is required for this unit), and instantaneously
after that a new unit arrives (with probability AQ). This is referred to as a late-
arrival system. The second system reverses the order in which these events are
allowed to occur, giving rise to the early-arrival system. In both systems, a new
unit is taken into service at the beginning of a time interval.

Processor-shared Model (No Priorities). If we assume zero swap-time, we may
consider the case of a round-robin system in which @ — 0. We must be careful in
taking this limit, since the service time n@ also goes to zero in this case and our
model loses all meaning. Consequently, let us agree to keep the average service time
constant as @ — 0. This involves changing o, the decay rate in eq. (1) such that
o — 1 as @ — 0. Specifically, we have that

- nz=1n8" - 1

and, defining

1 . . .
~— = average service requirement (in seconds),

uC
we obtain

Q

1 _ = constant as Q — O and ¢ — 1
wC 1 —¢

or

=1 — uCQ. (2)

Thus, the limiting operation we consider is where @ — 0 and ¢ — 1 in the manner

expressed in eq. (2). The result of this limit is that the required service [ (in opera-
tions) is exponentially distributed with paremeter u, namely,

p(l) = ue™, (3)

where [ is the length of the job.
We have chosen to assume that the length [ of a job is given in number of opera-

po

YL
M QUEUE

,. pii-o)
SERVICE
FACILITY

F1e. 1. Round-robin time-shared service system
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tions instead of in seconds, thus making the user requirement independent of the
machine on which it is serviced. We then define, for any processor, a quantity

(' = capacity of a processor in operations (say, additions) per second.

The service time for a job then becomes {/C seconds, with a mean service time of
1/pC seconds.

The arrival mechanism in the limit then becomes Poisson with an average arrival
rate of A customers per second. This model reduces to a system in which a user is
processed at a rate C/k operations per second when there are k users sharing a
computer of capacity C. This processing rate varies as new users enter and old ones
leave the system. We are here assuming an harmonie variation of individual proc-
essing rate with number of customers. (See Figure 2.)

Priority Processor-shared Model. 'This is a generalization of the processor-
shared system considered above. Here we assume that the input traffic is broken up
into P separate priority groups, where the pth group has a Bernoulli arrival pattern
at an average rate of A, customers per second and a geometrically distributed service
requirement whose mean is 1/(1 — o,) operations. For the @ — 0 case, we give a
member of the pth priority group ¢,€ seconds of service each time he cycles around
the queue (see Figure 3).

For @ — 0, holding fixed 1/u,C = @/(1 — ¢,), this model then reduces to a proc-
essor-shared model with a priority structure wherein a member from group p re-
ceived at time ¢ a fraction f, , where

_ g
f » T Tp ( 4)
Z gi T
1=1
of the total processing capacity ' (here 7. is the number of customers from priority
group 7 present in the system at time ¢). We note that we then have, for the pth
group, Poisson arrivals (A, per second) and exponential service with an average of
1/u,C seconds. The nonpriority processor-shared model considered earlier is the
special case g, = 1 for all p.
The interest in this model is that it can be used to give preferential service to
certain groups of users. For convenience, we may consider that the higher the value

C/N
POISSON
ARRIVALS X PER | C/N C=TOTAL PROCESSOR
SECOND C/N CAPACITY

(IN OPERATIONS
PR ———
: PER SECOND)

AVERAGE .
PROCESSING
REQUIREMENT C/N
= 1/ OPERATIONS| ¢/n |\ cUSTOMERS

(EXPONENTIAL) PRESENT

Fic. 2. Processor-shared model with NV in system
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I'r¢. 3. Round-robin time-shared serviee system with priorities (§ > 0)

f,C
f,c
n, TYPE |
CUSTOMERS
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f.C TOTAL CAPACITY
C(OPERATIONS
£ | |n,TrPe2 | PER SECOND)
CUSTOMERS
Ap TYPE p ARRIVALS fc
PER SECOND (POISSON) 2
—— : ,
I/ n AVERAGE SERVICE : | n. TYPE P
REQUIREMENT IN f e CUSTOMERS
OPERATIONS P
(EXPONENTIAL)

Fia. 4. Priority processor-shared model with n, type p in system

of p, the higher is considered the priority of the group. In such a case, we may
assume that g, is a monotonically increasing funetion of p (ulthough we do uot need
this for the subsequent development).

A diagram of the priority processor-shared system is shown in Figure 4,

We observe that the two processor-shared models are ideal in the sense that swap-
time is assumed to be zero and in that customers are given immediate use of the
processor (although only a fractional capacity f,C).

3. Results for Time-shared Systems
Round-Robin Systern. 'The Round-Robin system has already been studied 6]

We present the results of that analysis here. A
TaroreM 1. The expected value T, of the total time” spent in the late-arrival system

27, ig the sum of the time spent in the queue and the time spent in the service facility.
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for @ job whose service time 18 nl) seconds 1s

nQ RQZ I: (1 — ga)(1 — anvl)} .
rpn = = B 1+ 5 y b
IL—p L1—0p (L — o)L —p) 2
where
a = o+ N, (6)
A
Pl (1)
- g
Furthermore, the expected number B, of customers in the system s given by
B =2 | (8)

TueoreM 2. The expected value T, of the total time spent in the early-arrival sys-
tem for a unit whose service time is nQ) seconds s

o — NP |: (1 — ca)(l — anﬂ)]
T. =, Q) 1—p 1+ (1 = 91 = p) , {(9)

where a and p are as defined before. The expected number E, of customers in the system
18 given by

E/ - ’1(31:—2@ (10)

TueorREM 3. The expected value, T,", of the total time spent in the strict first-
come-first-served syszﬁemd for a unit whose service time is nt) seconds is

" QL,

1. = T2 g, (11)

where B, is defined in eq. (8).
We remark here that there is no significant difference in performance between the
late- and early-arrival systems. In [6] it is shown that a good approximation to T, is

T, = nQE, + nQ. (12)

When we compare eqs. (11) and (12), we see that for units which require a number
of service intervals less (greater) than 1/(1 — «), the round-robin waiting time for
the late-arrival system is less (greater) than the striet first-come-first-served system.
One notes, however, that the average number of service intervals 7 is exactly
1/(1 — ). Thus, for this approximate solution, the crossover point for waiting
time is at the mean number of service intervals. This effect is observable in Figures
5~7 in Section 4.

Processor-shared System. The Processor-Shared model considers the limit of the
round-robin model in which @ — 0 and ¢ = 1 — uCQ, giving a Poisson arrival
mechanism with an average of \ units arriving per second and an exponential

* This is our reference system and corresponds to the more usual ease where a unit receives its
complete processing requirement the first time it enters service.
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248 LEONARD KLEINROCK

service distribution with an average of 1/u operations per customer. In this case,
the early- and late-arrival systems become identical, and we have the following,

TrroreM 4. The expected value T(L) of the fotel time spent in the processor-shared
system for o customer vequiring | operations s

e

O AS (13
= p
where
p = NuC,
: . (14)
C' = capacity of the processor tn operalions per second.
The expected number £ of customers in the system is
E=-f (15)
L—0»p
Proor. We define !, the required number of operations for a customer as
L= lim 2. (16)
q-0
a1

This Fimit is meaningful in that the distribution on n (e, (1)) shows that as o - 1,
extremely large values of n oecur. Indeed, we may caleulate the probability distribu-
tion for i,
PriL < 1] = m PrianCQ < [
Q>0

Liae

=lm 2, (1 ~—a)c"
Q0 =l

now e

= lm1l — (1 — 40"
Q-+

n>R

— —ul
=1-—¢"

which proves that [ is exponentially distributed with mean 1/u operations as stated
i eq. (3).
We now consider the limiting form for eqs. (5) and (9). We have that

(1 —ga) =1 — (1 — w01 — wCQ + 1)
= Q2uC — N — Qa0 (1 — o]

and
m1 — " =liml— (1 = gCQ + M)V
@t G0
= lim 1 — [1 — u0Q(1 — p)|*"°@ ™
Q=0
=1 — 6*;11!(1“;:)
and

(1 — o) = (1 - 14,00 = (wCQ).
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Thus, defining
T = lim 7, ,
o

we obtain from eq. (5),

B QNG [ (_;~m)< ‘"“‘ﬂ}
T“)‘lgf;‘%{l»p ) R (e i

e wz{ [1— MO0 — A— me-pn}
S L v WCQ(1 — o)

_ e (1= ™"72uC — & — Qu0)'(1 — p>1}
TTo T Wi, p{Q e WO — )

_ e
1—»p'

Thus, we have established eq. (13) for the late-arrival system; but it is clear that
limgao T = limg.o 7% and so eq. (13) is true for the early-arrival system also.
From eqs. (8) and (10) it is clear that B = limge £,” = limg.o £, . This completes
the proof of Theorem 4.

In Section 4 these results are compared with those of the round-robin model.

Priovity Processor-shared System. In the Priority Processor-shared system, we
have P priority groups with Poisson arrivals at an average rate of N, per second and
an exponentially distributed service requirement with a mean of 1/u, operations
(p=1,2 ---, P). For a processor of capacity C operations per second, we assign
a customer from the pth priority group a capacity f,C when there are n; type-i
customers in the system; f, is given by eq. (4), namely,

fy = v
PTE ' (4)
Z i M
i=1

For such a system, we have the following theorem.
Turorem 5. The expected vatue T (1) of the total time spent in the priority proces-
sor-shared system for a customer from priority group p who requires L operations is

T,(1) D+ZJW}, (17)

=1 gx(1 — p)

The expected number, I, , of lype p customers in the system is

B, = P+Z@~Q@, (18)
1 9p

where
_ M
Py o C
and
P
p = Z Py
p==1

and where g, > 0, p=1,2,---, P.
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250 LEONARD KLEINRQqy

Proor. We carry out this proof by assuming 2 > 0 and that customers from the
pth priority group are given g,Q seconds of service each time they cycle around the
round-robin queue. We assume that the pth priority group has a geometrically dis.
tributed number of service intervals n with decay parameter 0 < o, < 1 (see eq,
(1)) and that a single arrival of type p occurs during the interval ¢ with probz;Lbility
A@ (and that no such arrival occurs with probability 1 — A,Q). Then when we gt
() — 0, we arrive at the priority processor-shared model." The proof follows the
approach used in [6] to solve the round-robin system.

Accordingly, let us consider the arrival of a unit (the tagged unit) from priority
group p and which requires n@ seconds of service (processing). Let i

B, = expected number of type p customers in the system,

Ty(n) = expected time spent in the system (queue plus service) for the tagmed
unit,

D, = expected delay (time spent) between the completion of the tagged unit’s

(k — 1)st ejection from service and its kth ejection from service.’
Clearly then,’
Ty(n) = 2, Di. (19)

We now define

N = expected number of type-¢ customers served between the completion of the

tagged unit’s (X — 1)st ejection from service and its kth ejection from
service.
Thus,
P
D, = Z_:l NiigiQ (20)
and so
nlgp P
To(n) = v Z;lNkigiQ- (21)

We now derive a general form for Ny, . Upon its arrival to the system, the tagged
unit finds a certain number of type-i units in the queue, the expected value of
which is £, by definition. Note that the service facility is empty whenever a new
unit enters the system. Thus,

Ni=FE: + 6, (22)

where

5 = 0, 7 0p,
® 1, i=p.

* We also assume a late-arrival system; however, this choice is unimportant, since early and
late arrival systems are identical for Q — 0.

* We complete this definition by assuming that its Oth ejection from service is completed at its
time of arrival to the system.

8 We do not worry about n/g, being an integer, since we shortly allow @ — 0, which effectively
converts this sum to an integral.

Journal of the Association for Computing Machinery, Vol. 14, No. 2, April 1967



Time-shared Systems: A Theoretical Trealment 251

The addition of 8 is due to the tagged unit’s first service interval. Now, each
E-unit of type ¢ will remain in the system with probability o, , and so o:( Ny — 8:p)
of them will contribute to Ny, . In addition, during the time Q 5 ¢,(N1; — 85),
devoted to servicing these units found in the original queue, we expect \; new units
of type 7 to arrive per second, and so we must also add \Q S g (Nyy — 84p)
more units to N . Besides all this, for n > 1, we must add one more (the tagged
unit itself) to Vs, , giving

P
No = 0o Ny — bip) + 2\Q Zlg,(zvu — bjp) + bip. (23)
<

In caleulating Nj: , we see that a fraction o; of the type-7 units which were served
during the Dy time interval will remain in the system; i.e., o;(Ny; — 6,5) type-s will
remain. In addition, during the time

P
D, =Q Zlgj(Naj = i),
=

we expect \;Ds new units to arrive on the average. Also, for n > 2, we must add one
more (the tagged unit again) to N, .

However, we now notice a new effect entering, namely, the presence of a type-i
unit which arrived (with probability \g,Q) at the conclusion of the first service
interval of the tagged unit. This additional unit was placed in back of the tagged
unit when it arrived and therefore did not appear in N», . From now on, however, it
will appear as an additional \g,Q added to each Ny, for k > 3. Thus,

P
N3f£ = Ui(N2i - 51‘17) + >\1Q Z].QJ(NZJ - Sjp) + 6'1'1) -+ >\z‘gpQ- (24)
=

For Ny; (k > 3) we repeat the arguments used for finding N, , with the substitutions
Ny: for Ny, and N, ; for No; . Thus, for k > 3 we obtain

P
Nii = 0il( Niai — 6ip) + NQ Zlgj(NkA.j — 8jp) F 8 + NigpQ.  (25)
4=

We now make use of the limit Q — 0 under the condition ¢, = 1 — p,CQ (s0
that ¢, — 1 for all p and the average number of operations required for type-p
units remains fixed at 1/u,). Applying this limiting operation to eq. (25) yields, for
k> 3,

]\_Tki = lim Nk-b = Nlc—-l,'i; k Z 3. (26)
Q-0
We have
Nu = Ny = E; 4+ 8 (27)
and, from egs. (23) and (27), we obtain
Ny = N = E; + Oip - (28)

Applying eq. (28) to eq. (26) for k& = 3 and repeating the process for all k, we
obtain the simple result

Neu=E;+ 6, B=1,2,3--. (29)
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We now consider the lmil of Tp(a) as @ — 0 and define

T, = 2151; Tuln) (309
From eqg. (21), (29), and (30), we then obtain
niop E {82
To(l) = lim 2, 2. Nug:Q = Zg, lim 3 Ny Q = L‘i‘ (B + 5ep) lim 7).
Qw0 k=1 i=1 =1 Q0 k=1 1y o0

But from eq. (18} we have that limg,, 2@ = I/C, and so

T, = Zgﬂ (B + i)

=1 fp

or

T(n-ﬁ(w—Ef’* ) (a0

a7
We must now evaluate £, the expected number of type-i customers in the
system. We make use of Little’s {7] result, which states that, in general, the ex-
pected number of units in & queucing system which has reached equilibrium is
equal to the produet of the average input rate of these units to the system and the
expeeted time spent by these units in the system. His result holds for priority sys-
tems ag well, and so we have the st of P linear simultaneous equations in the &, ,
namely,

EPEP\PTPJ p=1121"')Pr
where T, is the average time that type-p unils spend in the system. By definition,

- [ pwnma

From eqs. (3) and {31) we obtain

T, (1 + Z A ) (32)

and so we must solve

P
E, = A (14_'23}_&) p=12 D

or

1

.
oy pp(i-f-Z&E;) p=12---,P. (33)

i=1 {Jn

We assert that the solution to the set of eqs. (33) is given by eq. (18), namely,

P
Ep= -2 143 (%~ 1)p]. (18)
1—p =1 \gy

We cheek this assertion by substituting eq. (18) in eq. (33) and testing the (con-
jectured) identity

N I - S (RS TR
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P . LA L .
+§3<g_u- 1)p, +Eé’iﬂ[1+2(f”—1)p,]
=1 \{p =1 §p =1\

EM _ Zgapurzqmpzzgm;_ bupi

w1 fp =1 i=1 fp §=1 i=1 (p

or

i

or

or
P P P
¢ = zlpiz;ga‘ﬂj - legipi
T i~ i

0=0,

thus establishing the required identity and validating the asserted solution for #,
We must now evaluate {for subsequent use),

o= Rl [+ 2 - 1))

» P
o R Y dips Z(g{-l)m

=l—p 31— \g
P di i P P P
=Z . '+‘Z fl:rPJ Zgipi
1“11—9 'Lzl]. ]-11
Thus
S g

Zg.E =2 (34)
. =1=5"

We now substitute eq. (34) in eq. (31) to obtain finally

1 g: Pt
L) = [1 + ; gp(1 — p):’
thus establishing eqg. (17) and concluding the proof of Theorem 5.

In Section 4, this priority processor-shared model is compared with the other two
maodels studied.

For completeness, we also consider a strict first-come-first-served system with
the same input and service requirements as in our priority model, To this end, we
have

Turorem 6. The first-come-first-served system with a priovily input yields, for
customers with | required operalions, a total expected time in system us Jollows:

() = & ,’f,f,“.g {(35)
—p’
where
1 p \
oo B 36
E 3y, (
»=1

Proor. The result follows directly from classical queueing theory results. We
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proceed as follows, Upon entering, our tagged unit finds F' customers from priority
group p present in the system, each of which will take, on the average 1/u,0 seeond g
of service. His own tiume in serviee will be exactly /¢ seconds; thus,

L P f"
T = = L {
W) =5+ g;l e (37)
But from Little [7] we have
N1 = By (389
But for the first-come-first-served case, T, = T for all p. Thus, from eq. (37)
T = fw pora = Lo 3 e (39)
0 ul =1 fip a’
where
P )\ i
pll) =20 Spe
p=1 }\
and
r
A=,
=t
giving
1 2B Y R
— = == u, le ¥ d
,LLC =1 ?\C Ho 0 ? l
S S N
B=1 )\.Cﬂp }\. ’

where p is defined as in Theorem 5. This establishes eq. (36). Thus, eq. {(38) be-
comes

P
Ay ]—+ZE§ =F11, pzlﬁzﬂ”.)P‘ (40 )
wC =l

kW, FOR
FIRST COME
FIRST SERVED

02 04 06 08 10
P

Fie. 5. [(1 = 0)/(e@)IW, for the late-arrival round-robin system (o = 19/20)

i2

i
J.l
0z 04 08 08 1.0

p
Fig. 6. {1 — &)/ {oQ)W, for the late-arrival round-robin system (s = 4/5)
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The solution to this sel of equalicus is readily scon 1o be

A p
()

which when substituted into ey, {37) gives

£ f}_» & }\7? P
C =LA, Gl —p

(1) =

which completes the proof of Theorem 6.
We note that for P = 1 we have the (nonpriority) processor-shared system,

2
i-a
k= Q

28 -

24 |-

-~ kWn FOR

20 FIRST COME
FIRST SERVED

£ 16
-

12

8

4

N N
0
0 02 04 06 08 1.0

P
Fra. 7. [(1 — a)/{c@)]W, for the late-arrival round-robin system (o = 1/5)

OF 6 15 20 25 30 35 40 45 50

Fre. 8. [(1 ~ &)/o@IW, for the late-arrival round-robin systern as a funetion of n (p = 1/2, &
= 4/5)
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Fic. 9. Processor-shared system: performance as a function of p for varicus ul
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Frc. 10. Processor-shared system: performance as a funetion of ul for various p
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~FIRST
- COME

FIRST
SERVED
SYSTEM

p=l~

0 02 04 06 08 10
p o

Fie. 11. Priority processor-shared system: performance as a function of p for g, = p’
p=1,238,4,5),u8 =p XN=MNP, and pl=1

4. Discussion, Examples, and Comparison of the Systems

Having considered three models of time-shared systems, we now wish to compare
their performance among themselves as well as with the first-come-first-served
systems. The basis of comparison will be the average conditional additional delay
experienced by a customer (conditioned on his required processing as well as on his
priority ). We define the additional delay as the difference between the time that a
customer spends in the time-shared system and the time he would spend in the
system if no other customers were present (in a first-come-first-served model, this
is merely his time in queue); i.e., let

W,(l) = average additional delay experienced by a customer from priority group
p who requires ! operations in service (obvious analogous definition for
W,(n) and W(n) in the @ > 0 case).

We have’
WD) = T,0) = & (41)

In the most general model, we wish to display curves of W,(1) as a function of [

"Obviously, for @ > 0 we have W,(r) = 7,(n) — nQ.
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Frc, 12, Priority processor-shared system: Fra. 13. Priority processor-shared system :
performance as g funetion of p for g, = p performance as a function of p for

(p = 1: 2; 3: 41 5): Hp = M, lp = }‘/Py and g = 10g2 (1 + p) (p = 11 2’ 3F4’ 5)’
=1 - pp = g, Mp =ML, Wl =1

and as a funetion of p with p as a parameter. Furthermore, we choose to plot

1l — g

o
rather than W, {n) for purposes of a convenient normalization, which, in the
caze for § — 0 becomes u,CW,(1). Below we present these curves for various
examples.

Round-Robin System. In Figures 5-7, curves” of [(1 — ¢)/eQ]W, = kW, are
plotted to show the general behavior of the round-robin structure for the late-
arrival system. On each graph, (ecircled) points corresponding to the first-come-
first-gserved case have also been included. The normalization (1 — ¢)/e@) used is
such that for the first-come-first-served cage we obtain the curve p/(1 — p), which
18 a funetion only of p.

Figures 5-7 indicate the accuracy of the approximation discussed above, in which
the crossover point for waiting times is at the mean number of serviee intervals,
1/(1 - o). In Figures 5 and 6 there is no noticeable difference (on the scale used)

W,(n)

¢ These are the same curves a8 in Kleinrock []. In these curves, p was varied by fixing ¢ and
varying A {recall p — AMQ/1 — o)),
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25 30 35 40 45 50

who—

Fie. 14, Priority processor-shared system: performance as a function of gl for g, = p=
0 =15L2843u=0 M= N=NP and p=1/2

between the firsi-come-first-served points and the curve for n = 1/{1 — o); more-
over, in Figure 7 the points fall between the curves forn = 1 and n = 2, since
1/(1 — o) = 1.25.

In Tigure 8, we plot kW, as a function of n for p = 4, ¢ = £. In all these curves
(Figures 5-8) we observe that by introducing the round-robin system, one manipu-
lates the relative waiting time for different jobs and thus imposes a method of
time-sharing which pives preferential treatment to short jobs.

Processor-shared System. 1n Figures 9 and 10, we plot uUW (I} as a funetion of
p (for various i) and as a function® of wl (for various p), respectively.

In Figure 10, the circles indieate the values of uCW (I} for the strict first-come-
first-served system (see Theorem 6). Again we see the preferential treatment given
to shorter jobs, and again we see that the break-even point for jobs is the average
job length (wl = 1).

Priority Processor-shared Model. For these curves, we let g, = p, A, = NP,
P =5forp=1,2 ---,5 In Figures 11-13 we show pCW,(1) as a funetion of p
for various p and for pl = 1. Figurce 11 is for g, = ¢°, Figure 12 is for g, = p, and
TFigure 13 is for g, = logs (p + 1). In each of these figures, the cireles correspond
to the striet first-come-first-served system (which comparcs the treatment as a
function of p for the two systems).

In Figures 14-16 we show uCOW (1) as a function of ul for various p and for p =
1/2. Again g, = p°, g, = p, and g, = logs (p + 1) for Figures 14, 15, and 16, re-
spectively. In cach of these figures, the circles corrcspond to the behavior of a
first-come-first-served system. (On these axes, it is a constant additicnal delay,
independent of ul.) ' g

In both proeessor-shared models, W,({) approaches zero as p — 0 for all { and p.

In all the curves presented, we see that the effect of introducing a time-sharing
discipline is to reduce the average waiting time for customers with “short”’ service

®ul = 1/{1/p) is the length of a job normalized with respect to its average length,
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(processing) requircments at the expense of those customers with “longer”’ Service
requirements. Tor the nonpriority cases (i.e., the first two models studied), we oh-
serve Lhat customers with service (processing) requirements less {greater) than the
average requirement spend, on the average, less (greater) time in the system, com-
pared with a strict first-come-first-served systerm.

In the priority processor-shared syslem, we see a similar trend (ie., short 1obs
wail less than long jobs), and, in addition, we give preferential treatment (shorter
waiting) to eertain seleet high-priority groups. The effect now is that for job lengths
below some eritical value (dependent upon p, the priority group) a customer does

14—

P O‘Np ()

iy o

ne

pl—=

Fia. 15. Priority processor-shared system: performance as s function of ul for gp = p
(p=1,23435), =g N=MP, and p=1/2

F1a. 16. Priority processor-shared system: performanece as a funection of ul for
gp =log (L4+p) (p=1,2,3,4,5), Bp =4, A= NP, and p=1/2
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better (waits less) in the time-shared system than in a first-come-first-served
system. This critical length is monotonically increasing with p. The degree and
manner in which the different priority groups receive treatment depends upon the
function g, and may be varied over a considerable range of relative performance.

Conclusion

In this paper, we have considered several models of time-shared processing sys-
tems. These models provide the basic features desired in such systems, namely,
rapid service for short jobs and the virtual appearance of a (fractional capacity)
processor available on a full-time basis.

The most general model, the priority processor-shared systern, not only provides
the above features but also allows the population of customers to be divided into
priority classes where the higher priority groups receive preferential treatment
compared with the lower priority groups.

The assumption of zero swap-time results in models which provide the best pos-
sible performance of such time-shared systems. Comparison of these systems with
the strict first-come-first-served systems showed the relative improvement (or
deterioration) of performance as a function of service requirement and priority
group.
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